Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(7)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37048132

RESUMO

Primary cilia are sensory antennae located at the cell surface which mediate a variety of extracellular signals involved in development, tissue homeostasis, stem cells and cancer. Primary cilia are found in an extensive array of vertebrae cells but can only be generated when cells become quiescent. The small intestinal epithelium is a rapidly self-renewing tissue organized into a functional unit called the crypt-villus axis, containing progenitor and differentiated cells, respectively. Terminally differentiated villus cells are notoriously devoid of primary cilia. We sought to determine if intestinal crypts contain a quiescent cell population that could be identified by the presence of primary cilia. Here we show that primary cilia are detected in a subset of cells located deep in the crypts slightly above a Paneth cell population. Using a normal epithelial proliferative crypt cell model, we show that primary cilia assembly and activity correlate with a quiescent state. These results provide further evidence for the existence of a quiescent cell population in the human small intestine and suggest the potential for new modes of regulation in stem cell dynamics.


Assuntos
Cílios , Intestino Delgado , Humanos , Duodeno , Divisão Celular , Celulas de Paneth
2.
Cancers (Basel) ; 9(8)2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28933766

RESUMO

Integrins are a family of heterodimeric glycoproteins involved in bidirectional cell signaling that participate in the regulation of cell shape, adhesion, migration, survival and proliferation. The integrin α1ß1 is known to be involved in RAS/ERK proliferative pathway activation and plays an important role in fibroblast proliferation. In the small intestine, the integrin α1 subunit is present in the crypt proliferative compartment and absent in the villus. We have recently shown that the integrin α1 protein and transcript (ITGA1) are present in a large proportion of colorectal cancers (CRC) and that their expression is controlled by the MYC oncogenic factor. Considering that α1 subunit/ITGA1 expression is correlated with MYC in more than 70% of colon adenocarcinomas, we postulated that the integrin α1ß1 has a pro-tumoral contribution to CRC. In HT29, T84 and SW480 CRC cells, α1 subunit/ITGA1 knockdown resulted in a reduction of cell proliferation associated with an impaired resistance to anoikis and an altered cell migration in HT29 and T84 cells. Moreover, tumor development in xenografts was reduced in HT29 and T84 sh-ITGA1 cells, associated with extensive necrosis, a low mitotic index and a reduced number of blood vessels. Our results show that α1ß1 is involved in tumor cell proliferation, survival and migration. This finding suggests that α1ß1 contributes to CRC progression.

3.
Heliyon ; 2(5): e00109, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27441280

RESUMO

The Hedgehog (HH) signaling pathway is involved in the maintenance of numerous cell types both during development and in the adult. Often deregulated in cancers, its involvement in colorectal cancer has come into view during the last few years, although its role remains poorly defined. In most tissues, the HH pathway is highly connected to the primary cilium (PC), an organelle that recruits functional components and regulates the HH pathway. However, normal epithelial cells of the colon display an inactive HH pathway and lack a PC. In this study, we report the presence of the PC in adenocarcinoma cells of primary colorectal tumors at all stages. Using human colorectal cancer cell lines we found a clear correlation between the presence of the PC and the expression of the final HH effector, GLI1, and provide evidence of a functional link between the two by demonstrating the recruitment of the SMO receptor to the membrane of the primary cilium. We conclude that the primary cilium directly participates in the HH pathway in colorectal cancer cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...